常见问题
【智库声音】国外智能化技术在高超声速飞行器领域的应用研究

发布于:2024-03-05 04:04:27  来源:常见问题  点击量:14次

  21世纪初大数据、深度学习和先进计算等领域取得的技术突破,推动了人工智能的迅猛发展,当前人工智能不仅广泛渗入社会生产生活中,还在军事领域表现出巨大的应用潜力,其对综合信息的解决能力之高、速度之快,足以使未来战争的紧凑程度提升至新的高度,而作为绝对速度优势致胜的高超声速飞行器,人工智能的引入将能使其优势得到更彻底的发挥。目前,高超声速飞行器和AI这两种技术的结合已经引发了主要国家的高度兴趣。

  自1956年人工智能概念提出以来,其发展历经起伏,直至21世纪初才得到迅猛发展,成为一项世界公认的具有颠覆性和变革性的前沿技术。2013年以来,世界各国竞相发布AI相关战略规划,国家层面的人工智能博弈和竞争日趋激烈,已经在民用与工业领域得到了诸多成功应用。近年来国外积极探索AI在军事上的应用,虽然目前大多停留在数据统计、后勤规划等领域,但直接应用到武器装备上,在未来战场中发挥主导性作用只是时间问题。

  战场环境瞬息万变,目前武器装备多采用作战前规划模式,快速响应能力已显不足。目前可借助专家系统进行辅助决策,通过前方获取信息与资料库相比对,快速确定战场威胁,给出辅助决策降低人员工作负荷。未来引入深度学习后,将能实现深度神经推理,以数据驱动与知识引导结合,形成可适应通用环境的强人工智能,达到武器系统的决策自主化、智能化。

  武器装备的运动控制管理系统是强对抗环境下准确且低代价实现目标的保障。人工智能通过模糊控制、神经网络、自适应/自组织的使用,很适合非线性、时变、多变量、受环境扰动的复杂自动控制需求,实现稳定与鲁棒性的控制,使武器装备具有恶劣环境自适应能力、智能避障能力、跟踪高机动目标能力、自修复能力和高弹体控制能力。

  未来战争是多层次、全方位的信息化战争,需要由单体向协同作战模式转化。目前仅能实现装备间的初级协同,高度依赖预先规划与中枢指挥,未来将通过协同架构的选择、协同编队网络的生成、组网的保持、群体对抗、协同目标探测等环节,形成分布式“共享大脑”,开展智能化协同作战。

  高超声速武器是未来战场上的重要力量,其作战使用仍要建立高效的杀伤链,只有具备快速决策、快速响应能力,才能将高超声速武器的速度优势发挥彻底,为此势必需要智能化技术的引入现阶段高超声速飞行器智能化技术探索仍处在较为初期的阶段,更深程度的体系智能化探索仍需时日。

  桑迪亚国家实验室(Sandia National Laboratories,简称SNL)是为数不多的明确提出将AI运用在高超声速领域的国外机构。2019年4月,SNL发布多份说明文件与新闻媒体报道,阐述其构想与工作进展。SNL指出,目前主要工作围绕对高超声速飞行器自主规划的探索,希望到2024年完成新的自动飞行系统的基础技术开发。

  SNL将高超声速飞行器视为核大国之间新的战略制衡手段。传统弹道导弹虽然也可在大气外达到Ma5以上的飞行速度,但高超声速飞行器的飞行高度位于大气层内,从而在飞行过程中具有隐身性和机动性。速度更快、弹道更低、隐身性更好,使高超声速导弹能更好地突防敌防御系统。

  SNL认为,俄罗斯和中国正在着力发展进攻性高超声速武器系统,投入到正常的使用中后或将使美国的导弹防御系统失效。此前美国虽然高超声速技术开展了长期的试验性探索,但目前在武器化进程上居于落后。为了尽最大可能避免美国在这个具有战略意义的重要技术领域中被淘汰,需要将AI(“自主性”)与高超声速相结合,形成“力量倍增器”。

  SNL在1970年代就开展了双锥形机动滑翔飞行器技术的研发,AHW及后续的CPS项目利用该技术,在2012-2020年间曾多次成功试射,目前美国多型高超声速助推滑翔导弹所用的通用滑翔弹头(C-HGB)就是在其基础上发展形成的。

  SNL的人工智能引入也首先以高超声速助推滑翔飞行器为应用对象(未来延伸到吸气式高超声速飞行器及其它航空航天领域),由于这种飞行器以很高的速度飞行,再入阶段还需要面对复杂而剧烈的大气湍流,对控制的稳定性和精度等要求极高,因此其飞行任务的规划与编程工作要消耗数周时间,是“一项缓慢而艰苦的工作”;而AI引入后,理论上可在几分钟内完成高超声速飞行任务规划。

  为将人工智能自主性引入高超声速领域,SNL开展了名为“高超声速飞行任务竞赛”(Autonomy for Hypersonics mission campaign,简称Mission Campaign)的研究活动,于2017年启动,为期7年,总耗资3500万美元,对得到认可的技术创新团队给予资金支持,促进相关新技术发

  首支获得Mission Campaign基金的团队是名为“高超声速自主”(Autonomyfor Hypersonics,简称A4H)的团队。A4H旨在研究开发自主系统技术,利用人工智能来缩短任务规划时间并做出自适应的目标决策,从而显着增强高超声速飞行器的战斗效能。而这种能力将提升飞行过程中的灵活性,自适应遇到的多种问题,以应对目标变更、实时变化的终端作战情况、新的威胁意料之外的飞行条件等情况。

  目前的高超声速飞行的实现,一定要通过长周期的规划、进行脚本化的建模与仿真,形成为每次飞行量身定做的任务计划。A4H团队希望能够通过人工智能的引入,使飞行过程具备良好的自主性与自适应性,能应对复杂与意外的飞行状况,完成飞行任务;但该团队必首先解决高性能计算(HPC)问题。HPC利用现代机器学习(ML)和人工智能进行快速迭代的任务规划与分析,并可通过对已有场景状态的数据积累和合理的外推分析,得到应对新的不可预测场景的策略。

  高超声速飞行的HPC是一项需要耗费大量时间来攻关的技术难题。为此,A4H团队与SNL开展合作,利用SNL前期发展的HPC技术基础,两方将合作开展自主飞行需要的战场模型建立与仿真工作,进行对抗性学习,通过数十亿次量级的计算,获得最佳策略和解决方案。SNL与A4H团队希望借此获得高超声速能力变革,使美国重新获得并保持在高超声速这一战略性领域的优势地位。

  SNL目前主要致力于引入人工智能形成对高超声速飞行器的自主规划和控制。其间,SNL组织成立了一个名为“新墨西哥自治”(Autonomy New Mexico,简称AutonomyNM)的学术研究联盟该组织由众多美国大学组成,由Mission Campaign来管理,由SNL的“实验室研究与发展和学术联盟”计划提供资金支持。

  AutonomyNM旨在探索有关技术,建立人工智能航空航天系统,使包括高超声速飞行器在内的复杂飞行器具备自主飞行控制的能力,通过小型机载计算机即能将12小时的计算时间压缩为一毫秒高效生成高超声速飞行所需的算法。AutonomyNM更宏伟的目标是将AI引入自动运输、制造航天、农业等领域,形成更安全高效的自主能力。

  选择无人机作为试验平台的原因,包括这一些平台可以敏捷移动,能快速完成编程并无线传输到位,其所携带的摄像头载荷也可以灵活地换成其他传感器来测试。AutonomyNM所用的无人机装有两台机载计算机,其中一台较小的计算机用来控制转子,另一台较大的计算机用来处理来自摄像机的视觉信息。

  相对于汽车的无人驾驶,开放天空中的飞行器自主控制难度更大。因为汽车驾驶建立在已经十分完善道路规则上,对于各类状况都有比较明确的处理方法,因此就需要处理的是非常有限的规则集但飞行器的既有规则少得多,所给予的创造空间极大,但更大自由也相应带来了更大挑战。

  自主系统的特征是采用“感知-思考-行动”(SENSE-THINK-ACT)的闭环操作来实现其预定目标。目前高超声速飞行器具备自动“行动”能力,但这是对预先装订的程式化程序进行机械式执行的结果,并且仅依靠GPS的信息来获得末端精度,这极大限制了飞行灵活性。人工智能的引入将使这些系统具备感知和思考的能力,使其能够从周围环境中提取信息,并自主适应一直在变化的环境的预期之外的目标。在飞行中进行闭环的“感知-思考-行动”迭代循环,将极大的提升高超声速飞行器在对抗环境中处理各种目标的能力。

  高超声速技术是自主技术所能设计的难度最高的国防领域之一,与商业应用不同,国防领域需要在对抗性环境中进行复杂操作,并可能引发难以处理的后果。SNL选择高超声速飞行器作为人工智能的攻克对象,意在未来向更广泛的国防领域延伸,引入到其它类(如吸气式)高超声速飞行器、其它先进飞行系统、对抗环境中使用的自主系统等,为空中情报监视侦查(ISR)、空间弹性、太空竞赛等领域提供支持。

  可以看出,虽然美军第六代战斗机没有详细解释包括高超声速或定向能武器等在内的技术与人工智能技术将以何种形式及途径相结合,但其最终效果将是形成一种具备人工智能的高超声速飞机。

  对人类而言,将防御系统交给AI掌控是冒险性极高的赌注,但以高超音速武器为代表的现代武器正不断挤压防御方的响应时间,将迫使军队考虑将防御性武器系统控制权交给人工智能,令各国开始探索导弹防御系统向自主化发展=。

  人工智能在高超声速防御领域的应用将首先体现在相关传感器上。2019年6月,技术创新研究与咨询机构Lux Researc发h布了《智能传感:AI对传感器功能的影响》(IntelligentSensing: The Impact of AI on Sensor Capabilities)的报告,通过对2012年以来的13万份专利做多元化的分析得到了AI对各种传感器类型(包括光学,机械和声学传感器)的影响程度。该研究表明高超声速武器开发与防御是AI应用的重点。为对中俄等国的高超声速武器进行相对有效的预警探测,美国导弹防御局寻求太空传感器的提升,计划在2020财年着手扩建低地球轨道卫星群,该卫星群由分布在5个轨道层的1200颗卫星组成,其中200颗位于保管层,658颗位于太空运输层,200颗位于卫星跟踪层,200颗位于威慑层,其他的还有3架先进机动飞行器独立形成一层。应对高超声速威胁的太空传感器层不仅需要增强传感器功能,还需要借助AI和改进升级的通信技术,来处理数据并向指挥官提供战争管理建议。

  高超声速武器能打破传统的时空尺度,极大压缩防御方的应对时间,传统的人脑分析与决策难以适用,将促使防御方寻求借助智能化技术来主导或参与分析和决策过程。特别是对高超声速核武器的战略防御与二次反击系统,关乎国家甚至人类命运,最适合运用AI在紧急时刻的进行高效分析判断,但同时也将使人类丧失部分甚至全部核战争主导权,带来难以承受的风险。

  目前高超声速智能化尚处萌芽阶段,有关技术的应用探索大多分布在在高超声速攻防端武器本身但若将目光进一步放宽至高超声速飞行器全周期范畴,比如在设计阶段依据输入自主完成提出综合优化方案并计算得到结果,在制造阶段自主完成工艺方案的编制等,实现后将极大缩短高超声速飞行器从概念到实物所需的时间。其中,能够支撑深度学习的高性能计算处理技术将是决定人工智能能否在高超声速领域应用的最重要的条件,该技术突破后所能提供的支撑将是广泛性的,AI在高超声速设计-生产-试验-使用-维护全周期的全面应用也将指日可待。国外已经着手探索有关技术我国也应予以重视,一方面积极开展技术与应用的探索,另一方面谨慎对待AI在军事领域的应用,避免造成不必要的损失。

  美国国防部将AI与高超声速飞行器视为最优先关注的军事技术领域,这两种新质技术均足以对未来高技术战争产生革命性影响,未来战场中二者相辅相成、缺一不可,高超声速飞行器为载体、人工智能为核心,将为未来战场决策者提供更多更灵活的选择,形成新的战略制高点。